
Security Assessment

Perion
CertiK Verified on Feb 6th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

0 Minor

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 5 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY PERION

CertiK Verified on Feb 6th, 2023

Perion

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Others

ECOSYSTEM

Other

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 02/06/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Periondao/perion-liquidity-mining/

...View All

COMMITS
5cd0cb6ddbd22d1054c34dceb5c11025864632a7

76f03d2c2d566c4f4f930176aa4b723806baa8fc

...View All

7
Total Findings

5
Resolved

1
Mitigated

0
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/Periondao/perion-liquidity-mining/

TABLE OF CONTENTS PERION

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Findings

TUP-01 : Centralized Control of Contract Upgrade

BBP-01 : Payable Function Using `delegatecall` Inside a Loop

CON-01 : Potential Front-run Attack can to Unprotected Initializer

GLOBAL-01 : Incompatibility With non-standard ERC20 tokens

TLN-01 : Lack of Storage Gap in Upgradeable Contract

TLP-01 : Potential Issues on Rewards Distribution

TPP-01 : Potential failure to extend lock period

Optimizations

CON-02 : User-Defined Getters

TLP-02 : Unused State Variable

Appendix

Disclaimer

TABLE OF CONTENTS PERION

CODEBASE PERION

Repository

https://github.com/Periondao/perion-liquidity-mining/

Commit

5cd0cb6ddbd22d1054c34dceb5c11025864632a7

76f03d2c2d566c4f4f930176aa4b723806baa8fc

CODEBASE PERION

https://github.com/Periondao/perion-liquidity-mining/

AUDIT SCOPE PERION

11 files audited 1 file with Resolved findings 10 files without findings

ID Repo Commit File SHA256 Checksum

TPP
Periondao/perion-

liquidity-mining
76f03d2 TimeLockPool.sol

18afa872d6d6d32e1f3fec137e7053cf3d5b9c

eea34be255a858a6c6631dbf52

ABS
Periondao/perion-

liquidity-mining
76f03d2

base/AbstractRewar

ds.sol

e270601f91d6125f40e9561270b476381d916

28655006fef5d0e70ac9b89807b

BAE
Periondao/perion-

liquidity-mining
76f03d2 base/BasePool.sol

756b87b1ac1858e910e371ae6f078c07b1f4d

2c925eee119f0bc080b10ddbcea

BOR
Periondao/perion-

liquidity-mining
76f03d2

base/BoringBatchab

le.sol

d49f31dbbabb52cd64bbd9464d3ae53d19445

9bd9b145c116721627e0bec1e4c

IPU
Periondao/perion-

liquidity-mining
76f03d2 Imports.sol

e7ca8219d5b41b79ec5ee4d4d2535f567ee94

b76c31d35c7d1999d62f2ae5974

TLT
Periondao/perion-

liquidity-mining
76f03d2

TimeLockNonTransf

erablePool.sol

2529dfabdfd533d8522f0bda0c1f9b3ba987df4

ed2302ba7b335d960e5c9a2f7

UPP
Periondao/perion-

liquidity-mining
76f03d2

TransparentUpgrad

eableProxy.sol

55a1e36d47a2f81882bb37dce50c39c6c2600

2c5f51f81f660f258701c043c2b

VPU
Periondao/perion-

liquidity-mining
76f03d2 View.sol

46480967f8a6d25c0be1e8c3265d426138024

26a67cde655c584e0b3cb7897e2

IAP
Periondao/perion-

liquidity-mining
76f03d2

interfaces/IAbstract

Rewards.sol

e0394c1ee77ded691dabe466d7f215f96d250

078dd7dfc27065453abbedd9d9c

IPP
Periondao/perion-

liquidity-mining
76f03d2

interfaces/IBasePoo

l.sol

4d2377ee376d612be01f7f068f5f7f3c66b3d17

24933d473bc8a820ba273cb0b

ITP
Periondao/perion-

liquidity-mining
76f03d2

interfaces/ITimeLoc

kPool.sol

16f0f4ab85fde5c437b1ea83fd6e06f08bf183c

148d5d6bc01dfa1d827002e3d

AUDIT SCOPE PERION

APPROACH & METHODS PERION

This report has been prepared for Perion to discover issues and vulnerabilities in the source code of the Perion project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS PERION

REVIEW NOTES PERION

Overview

The Perion team has created a staking functionality where users can deposit and lock ERC20 tokens in order to earn a

yield.

The contract (sPERC-LP) has been deployed to address 0xc014286360Ef45aB15A6D3f6Bb1E54a03352aC8f.

The contract (SPERC) has been deployed to address
0xf64F48A4E27bBC299273532B26c83662ef776b7e.

External Dependencies

In the Perion stacking contract, the project relies on a few external contracts and addresses to fulfill the needs of its business

logic.

Addresses

The following addresses interact at some point with specified contracts, making them an external dependency.

The address escrowPool with the interface ITimeLockPool .

The address rewardToken with the interface IERC20 .

The address depositToken with the interface depositToken .

During the review, no hardcoded address values were found in the codebase. All following values are initialized either at

deploy time or by specific functions in smart contracts.

Contracts

The project uses OpenZeppelin libraries and contracts for contract format and functionality as well as for functions such as

security and verification.

The following contracts are referenced in various contracts:

SafeERC20Upgradeable , ERC20VotesUpgradeable.sol , SafeCastUpgradeable.sol , AccessControlEnumerableUp

gradeable.sol , Initializable.sol , DraftIERC20Permit.sol

TransparentUpgradeableProxy.sol , MathUpgradeable.sol .

REVIEW NOTES PERION

https://etherscan.io/address/0xc014286360Ef45aB15A6D3f6Bb1E54a03352aC8f#code
https://etherscan.io/address/0xf64F48A4E27bBC299273532B26c83662ef776b7e#code

FINDINGS PERION

This report has been prepared to discover issues and vulnerabilities for Perion. Through this audit, we have uncovered 7

issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

TUP-01
Centralized Control Of Contract

Upgrade

Centralization /

Privilege
Major Mitigated

BBP-01
Payable Function Using

delegatecall Inside A Loop
Volatile Code Informational Resolved

CON-01
Potential Front-Run Attack Can To

Unprotected Initializer
Logical Issue Informational Resolved

GLOBAL-01
Incompatibility With Non-Standard

ERC20 Tokens
Logical Issue Informational Acknowledged

TLN-01
Lack Of Storage Gap In Upgradeable

Contract
Logical Issue Informational Resolved

TLP-01
Potential Issues On Rewards

Distribution
Volatile Code Informational Resolved

TPP-01 Potential Failure To Extend Lock Period Logical Issue Informational Resolved

FINDINGS PERION

7
Total Findings

0
Critical

1
Major

0
Medium

0
Minor

6
Informational

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674061260820
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095158
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095150
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674241561608
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674218275644
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674505972760
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1675455259715

TUP-01 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization /

Privilege
Major

contracts/TransparentUpgradeableProxy.sol (5cd0cb):

6
Mitigated

Description

TransparentUpgradeableProxy is an upgradeable contract, the owner can upgrade the contract without the community's

commitment. If an attacker compromises the account, he can change the implementation of the contract and drain tokens

from the contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.
Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

TUP-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674061260820

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Perion Team, 02/03/2023]:
The Perion Team has implemented a multi-signature wallet prior to this audit to protect against a

single point of failure resulting from a compromised private key. These measures include the use of multi-signature wallets.

The corresponding wallet admin_ is a GnosisSafe deployed at the address

0x12D73beE50F0b9E06B35Fdef93E563C965796482 | ETH.

The multisig wallet addresses are:

eth:0x98b729F0212AC8a4647c70dCFbf982439372Eaf9

eth:0x0E57EefdD1eDb66e4984c3E3026A48189F4B064C

eth:0xb9F686e51038A6F05Ae7D8d18Ae8F1D4c7f6dcF0

TUP-01 PERION

javascript:void(0)

BBP-01 PAYABLE FUNCTION USING delegatecall INSIDE A LOOP

Category Severity Location Status

Volatile Code Informational contracts/base/BoringBatchable.sol (5cd0cb): 37 Resolved

Description

delegatecall() is used inside a loop in a payable function. If the called function uses msg.value , the incoming payment

may be processed multiple times unexpectedly.

35 function batch(bytes[] calldata calls, bool revertOnFail) external payable {

36 for (uint256 i = 0; i < calls.length; i++) {

37 (bool success, bytes memory result) =

address(this).delegatecall(calls[i]);

38 if (!success && revertOnFail) {

39 revert(_getRevertMsg(result));

40 }

41 }

42 }

This usage can be dangerous as the implementation contract can change in the future. Especially in the case of double

spending issues.

Recommendation

if this is not necessary we advise removing the payable attribute, and also not using logic that relies on the msg.value in

the future upgrade.

Alleviation

[Perion Team, 01/25/2023]: The team heeded the advice and resolved the finding by removing the payable of the function

batch() in the commit cad907a36b889f9b385f8f65cae469167507fdb4.

BBP-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095158
javascript:void(0)

CON-01 POTENTIAL FRONT-RUN ATTACK CAN TO UNPROTECTED
INITIALIZER

Category Severity Location Status

Logical

Issue
Informational

contracts/TimeLockNonTransferablePool.sol (5cd0cb): 7; contracts/

base/BoringBatchable.sol (5cd0cb): 35
Resolved

Description

The TimeLockNonTransferablePool contract does not protect its initializer function initialize() , which makes it

vulnerable and permits an attacker to take control of the logic contract and perform privileged operations that could either

destroy the proxy.

6 contract TimeLockNonTransferablePool is TimeLockPool {

TimeLockNonTransferablePool is an upgradeable contract that does not protect its initializer.

7 function initialize()

initialize is an unprotected initializer function.

If the team does not deploy the transparent proxy and the implementation in the same transaction, it leaves an opportunity

for an attacker to carry out a "front-run" attack. This would allow the attacker to call the initialize() function on the

implementation before the team and claim ownership of the contract, potentially enabling them to perform privileged

operations and steal ownership. A potential scenario has been described below.

The auditors are requesting information regarding the process of deploying contracts and asking if that will be executed

within the same transaction?

Scenario

1. The developer deploys the implementation contract.

2. The attacker "frontruns" the developer and calls the initialize() function on the implementation.

3. The developer then deploys the upgradeable contract that points to the implementation.

Recommendation

CON-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095150

We advise calling _disableInitializers in the constructor or giving the constructor the initializer modifier to prevent

the initializer from being called on the logic contract.

Reference: https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-

upgradeable#initializing_the_implementation_contract

Alleviation

[Perion Team, 01/25/2023]: The team heeded the advice and resolved the finding by adding the function

_disableInitializers() inside the constructor of the contract in the commit

3639b5f096f2999492878fc4d68821e6b1b1768f.

CON-01 PERION

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
javascript:void(0)

GLOBAL-01 INCOMPATIBILITY WITH NON-STANDARD ERC20
TOKENS

Category Severity Location Status

Logical Issue Informational Acknowledged

Description

The current design is not compatible with non-standard ERC20 tokens, such as deflationary tokens or tokens that adhere to

the ERC777 standard. Implementing non-ERC20 compliant versions of the depositToken and rewardToken functions

may result in unexpected behavior and potential security issues.

31 IERC20 public depositToken;

32 IERC20 public rewardToken;

Recommendation

We advise our client to ensure that the tokens set during initialization adhere to the ERC20 standard as implemented in the

OpenZeppelin library to avoid any unexpected behavior or security issues.

Alleviation

[Perion Team, 01/25/2023]: The team acknowledged the finding and decided to not change the codebase, as the team will

only use ERC20 tokens compliant with the project.

GLOBAL-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674241561608

TLN-01 LACK OF STORAGE GAP IN UPGRADEABLE CONTRACT

Category Severity Location Status

Logical Issue Informational contracts/TimeLockNonTransferablePool.sol (5cd0cb): 7 Resolved

Description

For upgradeable contracts, there must be a storage gap to "allow developers to freely add new state variables in the future

without compromising the storage compatibility with existing deployments". Otherwise, it may be very difficult to write new

implementation code. Without a storage gap, the variable in child contract might be overwritten by the upgraded base

contract if new variables are added to the base contract. Lack of Storage can lead to unexpected behavior during the

upgrading of the base contract TimeLockPool .

1 // SPDX-License-Identifier: MIT

2 pragma solidity 0.8.7;

3

4 import "./TimeLockPool.sol";

5

6 contract TimeLockNonTransferablePool is TimeLockPool {

7 function initialize(

8 string memory _name,

9 string memory _symbol,

10 address _depositToken,

11 address _rewardToken,

12 address _escrowPool,

13 uint256 _escrowPortion,

14 uint256 _escrowDuration,

15 uint256 _maxBonus,

16 uint256 _maxLockDuration,

17 uint _endDate

18) public initializer {

19 __TimeLockPool_init(_name, _symbol, _depositToken, _rewardToken,

_escrowPool, _escrowPortion, _escrowDuration, _maxBonus, _maxLockDuration,

_endDate);

20 }

21

22 // disable transfers

23 function _transfer(address _from, address _to, uint256 _amount) internal

override {

24 revert("NON_TRANSFERABLE");

25 }

26 }

TLN-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674218275644

The auditors wish to inform the team that while there is currently no vulnerability, it may appear in the future if a developer

introduces variable parameters inside the TimeLockNonTransferablePool contract.

Recommendation

We recommend adding the following code to prevent storage collisions inside the TimeLockNonTransferablePool contract.

uint256[50] private __gap;

Alleviation

[Perion Team, 01/27/2023]: The team heeded the advice and resolved the finding by adding a storage gap into the contract

TimeLockNonTransferablePool in the commit 20ce00782871b549bc1ddad9748986463079a729.

[CertiK, 01/27/2023]: The __gap[50] has been removed from the BasePool contract. In this case, when the team wants

to upgrade and add new variables they need to add the new variables into TimeLockNonTransferablePool contract and

update the gap (__gap[x]) storage accordingly. Otherwise, this can lead to storage collision and unexpected behavior.

TLN-01 PERION

javascript:void(0)

TLP-01 POTENTIAL ISSUES ON REWARDS DISTRIBUTION

Category Severity Location Status

Volatile Code Informational contracts/TimeLockPool.sol (5cd0cb): 217 Resolved

Description

According to the design of the TimeLockPool.sol , users can deposit tokens and gain "share tokens", which determines

how many reward tokens can be received. The reward is distributed by the project that calls distributeRewards() , and

holding more share tokens means gaining more reward tokens in this round. This design could cause some more profitable

strategies to deposit tokens into the pool.

For example, whales may gain the most reward for a short locking time. A whale may maintain a small number of tokens

deposited in the pool and call increaseLock() to increase the deposit dramatically to gain more shares every time when

rewards are going to distribute. This can be achieved by front running. As the increaseLock() function does not update

the end time of the locking, the whale can leave the pool in a short locking period, thus gaining most of the reward in this

round.

Recommendation

We would like to learn more about how the reward will be distributed and ensure the above situation will not cause actual

issues to the project.

Alleviation

[Perion Team, 1/29/2023]: This is not an issue as the increaseLock function only credits the depositor with the remaining

time on their deposit (giving them zero advantage).

// Multiplier should be according the remaining time from the deposit until its

end.

uint256 remainingDuration = uint256(userDeposit.end - block.timestamp);

uint256 mintAmount = (_increaseAmount * getMultiplier(remainingDuration)) / ONE;

A whale can wait to increaseLock before the reward distribution but that would provide no advantage and would actually

result in them receiving less than if they had just deposited the full amount at the beginning.

We are also disclosing our reward distribution schedule so it will not be a surprise to anyone.

[Perion Team, 2/2/2023]:
Because the minimum lock time is one month and rewards are distributed at the same time every

day. This should be the expected behavior.

TLP-01 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674505972760

TPP-01 POTENTIAL FAILURE TO EXTEND LOCK PERIOD

Category Severity Location Status

Logical Issue Informational TimeLockPool.sol: 175~182 Resolved

Description

In the function extendLock() , users can extend their lock period on their deposits. However, in the following scenarios,

there's possibility that users may fail to extend their deposit locks.

Scenario

Considering the following scenarios, the related parameters are simplified without losing generality.

Case 1, with only extendLock() considered:

1. An user makes his initial deposit by calling the deposit() at time 0, with _amount = 100 , _duration = 10 ,

where the maximum duration maxLockDuration is assumed as 10 as well, and endDate here is 20.

2. Representative tokens are minted based on the deposited _amount and the multiplier . Further, for simplicity,

maxBonus = 10 ,

Hence, the user currently has a number of shares equal to 110.

3. Before the lock period expires, which is at time 10, the user could call extendLock() to extend the lock period.

4. Assume at time 2, the user calls the function extendLock() with _increaseDuration = 1 to extend the lock to

time 11, which is assumed equal to or greater than the MIN_LOCK_DURATION .

5. Therefore, the duration on L175 is

6. Since the new mintAmount = 100 < userDeposit.shareAmount , the user can't extend the lock once they had

maxed the duration in the past.

TPP-01 PERION

multiplier = 1 + ​ =
maxLockDuration

maxBonus×duration 1 + ​ =10
10×10 11

mintAmount = amount× multiplier = 10 × 11 = 110

duration = min(maxLockDuration,depositEnd − currentT ime + increaseDuration) =

min(10, 10 − 2 + 1) = 9

mintAmount = amount× multiplier = 10 × (1 + ​) =
maxLockDuration

maxBonus×duration 10 × (1 + ​) =10
10×9 10 ×

(1 + 9) = 100

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1675455259715

Case 2, both extendLock() and increaseLock() are considered:

1. An user makes his initial deposit by calling the deposit() at time 0, with _amount = 100 , _duration = 10 ,

where the maximum duration maxLockDuration is assumed as 10 as well, and endDate here is 20.

2. Representative tokens are minted based on the deposited _amount and the multiplier . Further, for simplicity,

maxBonus = 10 ,

Hence, the user currently has a number of shares equal to 110.

3. Before the lock period expires, which is at time 5, the user could call increaseLock() to increase the locked

amount.

4. Assume at time 2, the user calls the function increaseLock() with _increaseAmount = 10 .

5. Therefore, the remainingDuration = 8 on L227 is

6. userDeposit.shareAmount = 110 + 90 = 200 .

7. Assume at time 5, the user calls the function extendLock() with _increaseDuration = 1 to extend the lock to

time 11, which is assumed equal to or greater than the MIN_LOCK_DURATION .

8. Therefore, the duration on L175 is

9. Since the new mintAmount = 140 < userDeposit.shareAmount , which is 200, the user can't extend the lock even if

the increased lock amount at time 2 doesn't have the max duration.

Recommendation

Recommend reconsidering the logic of deposit lock extension implementation to ensure that it's intended.

Alleviation

TPP-01 PERION

multiplier = 1 + ​ =
maxLockDuration

maxBonus×duration 1 + ​ =10
10×10 11

mintAmount = amount× multiplier = 10 × 11 = 110

mintAmount = amount× multiplier = 10 × (1 + ​) =
maxLockDuration

maxBonus×remainingDuration 10 × (1 + ​)

=
10

10×9

10 × (1 + 8) = 90

duration = min(maxLockDuration,depositEnd − currentT ime + increaseDuration) =

min(10, 10 − 5 + 1) = 6

mintAmount = amount× multiplier = 20 × (1 + ​) =
maxLockDuration

maxBonus×duration 20 × (1 + ​) =10
10×6 20 ×

(1 + 6) = 140

[Perion Team, 02/06/2023]: This is the intended behavior by the project, so the team acknowledged the finding and decided

to not change the codebase.

TPP-01 PERION

OPTIMIZATIONS PERION

ID Title Category Severity Status

CON-02 User-Defined Getters Gas Optimization Optimization Acknowledged

TLP-02 Unused State Variable Gas Optimization Optimization Resolved

OPTIMIZATIONS PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674061260823
https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095151

CON-02 USER-DEFINED GETTERS

Category Severity Location Status

Gas

Optimization
Optimization

contracts/TimeLockPool.sol (5cd0cb): 235~237; contracts/b

ase/AbstractRewards.sol (5cd0cb): 54~56
Acknowledged

Description

The linked functions are equivalent to the compiler-generated getter functions for the respective variables.

 function getDepositsOf(address _account) public view returns(Deposit[] memory) {

 return depositsOf[_account];

 }

...

 function withdrawnRewardsOf(address _account) public view override returns

(uint256) {

 return withdrawnRewards[_account];

 }

It is a better practice to instead declare the variable as public as compiler-generated getter functions are less prone to

error and more maintainable than manually written ones.

Recommendation

We advise that the linked variables are instead declared as public as compiler-generated getter functions are less prone

to error and much more maintainable than manually written ones.

Alleviation

[Perion Team, 01/20/2023]: The team acknowledged this finding and decided not to change the codebase at the current

stage.

CON-02 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674061260823

TLP-02 UNUSED STATE VARIABLE

Category Severity Location Status

Gas Optimization Optimization contracts/TimeLockPool.sol (5cd0cb): 25 Resolved

Description

The unit state variable is never used in the codebase.

25 uint256 public unit;

Recommendation

We advise removing the unused variables.

Alleviation

[Perion Team, 01/25/2023] :

The team heeded the advice and resolved the finding by removing the unused code in the commit hash

6887a9e999f9781ffd32cd7daf51ca03d1929ec7.

TLP-02 PERION

https://accelerator.audit.certikpowered.info/project/d73f4c80-90ba-11ed-ac8d-9fe07e55cb4e/report/new?fid=1674062095151
javascript:void(0)

APPENDIX PERION

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX PERION

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER PERION

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER PERION

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Perion Security Assessment CertiK Verified on Feb 6th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

